Overview
- The reader will see how the comparison of two unrelated control designs works in practice
- The real application of the solutions arrived at can easily be used as templates for time-saving adaptation to other sewer systems
- The results and designs presented here are shown actually to work in real life
Part of the book series: Advances in Industrial Control (AIC)
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
A sine qua non of control system development for modern sewer networks is the preservation of the water system around a network’s outflow(s). Several approaches have been proposed for the optimisation of sewage control and Optimal Real-time Control of Sewer Networks provides a comparative synthesis of a central sewer network flow control based on two of these: nonlinear-optimal and multivariable-feedback control.
Testing and comparison of these protocols are made on the basis of their control results for the large-scale sewer network located around the river Obere Iller in Bavaria. The control strategies implemented within this network are based on this study.
From the selection of possible methods of control and moving to the implementation of those methods in a real sewer system, this monograph will be invaluable to control and civil engineers working in sewage flow and wastewater treatment and of interest to academics wishing to see how their ideas on optimal control work out when practically applied.
Similar content being viewed by others
Keywords
Table of contents (8 chapters)
Reviews
From the reviews of the first edition:
"The monograph deals with the optimal real-time control of combined sewer networks. … This monograph presents a self-contained comparative synthesis of a centralized sewer network flow control problem … . It is notable as the presentation of an extensive case study based on the particular sewer network. … This excellent book is primarily addressed to practitioners as well as researchers in control and civil engineering working in sewer flow and wastewater treatment industry." (Lubomír Bakule, Zentralblatt MATH, Vol. 1074, 2005)
Authors and Affiliations
About the authors
Magdalene Marinaki was born in Chania, Greece. In 1993, she received the Dipl.- Eng. degree in Production Engineering and Management from the Technical University of Crete, Greece, while she received the M. Sc. and Ph. D. degrees in Production Engineering and Management from the same University in 1995 and 2002, respectively.
She received a scholarship by the Institute of National Scholarships and the Technical Chamber of Greece in the academic year 1991-1992 for high performance in her studies. Since March 1994, she has been a Research and Teaching Associate of the Dynamic Systems and Simulation Laboratory of the Technical University of Crete. She has participated in research projects and she has assisted undergraduate courses. Since September 2000, she has been teaching at the Technological Educational Institute of Crete, Branch of Chania. Since September 2002, she has been a contract lecturer at the Technical University of Crete, Department of Production Engineering and Management. She is the author of research reports and papers in international journals and scientific conferences. Her research interests include optimal and automatic control, operations research and applications to water systems, transportation systems and further areas. She is a member of the Technical Chamber of Greece (TEE).
Markos Papageorgiou was born in Thessaloniki, Greece, in 1953. He received the Diplom-Ingenieur and Doktor-Ingenieur (honors) degrees in Electrical Engineering from the Technical University of Munich, Germany, in 1976 and 1981, respectively. From 1976 to 1982 he was a Research and Teaching Assistant at the Control Engineering Chair, Technical University of Munich. He was a Free Associate with Dorsch Consult, Munich (1982-1988), and with Institute National de Recherche sur les Transports et leur Sécurité (INRETS), Arcueil, France (1986-1988). From 1988 to 1994 he was a Professor of Automation at the Technical University of Munich. Since 1994he has been a Professor at the Technical University of Crete, Chania, Greece. He was a Visiting Professor at the Politecnico di Milano, Italy (1982), at the Ecole Nationale des Ponts et Chaussées, Paris (1985-1987), and at MIT, Cambridge (1997, 2000); and a Visiting Scholar at the University of Minnesota (1991, 1993), University of Southern California (1993) and the University of California, Berkeley (1993, 1997, 2001).
Dr. Papageorgiou is the author of the books Applications of Automatic Control Concepts to Traffic Flow Modeling and Control (Springer, 1983) and Optimierung (Oldenbourg, 1991; 1996), the editor of the Concise Encyclopedia of Traffic and Transportation Systems (Pergamon Press, 1991), and the author or co-author of some 230 technical papers. His research interests include automatic control and optimization theory and applications to traffic and transportation systems, water systems and further areas. He is an Associate Editor of Transportation Research-Part C, of IEEE Transactions on Intelligent Transportation Systems and a member of the IEEE Control System Society, Conference Editorial Board, and Chairman of the IFAC Technical Committee on Transportation Systems. He is a member of the Technical Chamber of Greece (TEE) and a Fellow of IEEE. He received a DAAD scholarship (1971-1976), the 1983 Eugen-Hartmann award from the Union of German Engineers (VDI), and a Fulbright Lecturing/Research Award (1997).
Bibliographic Information
Book Title: Optimal Real-time Control of Sewer Networks
Authors: Magdalene Marinaki, Markos Papageorgiou
Series Title: Advances in Industrial Control
DOI: https://doi.org/10.1007/b138719
Publisher: Springer London
eBook Packages: Engineering, Engineering (R0)
Copyright Information: Springer-Verlag London 2005
Hardcover ISBN: 978-1-85233-894-7Published: 07 January 2005
Softcover ISBN: 978-1-4471-5673-4Published: 29 November 2014
eBook ISBN: 978-1-84628-092-4Published: 02 December 2005
Series ISSN: 1430-9491
Series E-ISSN: 2193-1577
Edition Number: 1
Number of Pages: XVII, 161
Topics: Control and Systems Theory, Water Industry/Water Technologies, Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution, Waste Management/Waste Technology, Civil Engineering